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Abstract— Symbolic models of control systems have recently
been used to synthesize controllers enforcing specifications given
by temporal logics, regular languages, or automata. These
specification mechanisms can be regarded as qualitative since
they divide the set of trajectories into bad trajectories (those
that should be eliminated by control) and good trajectories
(those that need not be eliminated). In many situations, however,
a quantitative specification, where each trajectory is assigned
a cost, is more appropriated. As a first step towards the
synthesis of controllers enforcing qualitative and quantitative
specifications we investigate in this paper the use of symbolic
models for time-optimal controller synthesis. Our results show
that it is possible to obtain upper and lower bounds for the
time to reach a desired target by an algorithmic analysis of
the symbolic model. Moreover, we can also algorithmically
synthesize a feedback controller enforcing the upper bound. All
the algorithms have been implemented using Binary Decision
Diagrams and are illustrated by some examples.

I. INTRODUCTION

The purpose of this paper is to advocate the use of
symbolic abstractions of control systems for the synthesis
of control laws enforcing, not only qualitative, but also
quantitative specifications. Symbolic abstractions are simpler
descriptions of control systems, typically with finitely many
states, where each symbolic state represents a collection
or aggregate of original states. Recent work in symbolic
control [1], [2], [3] has shown that it is possible to
use symbolic models to synthesize controllers enforcing
specification classes that are difficult to cater using more
established control theoretical methods. Examples of such
specifications classes include requirements expressible in
temporal logics, ω-regular languages, or automata on infinite
strings. These requirements are of qualitative or binary
nature since a trajectory either satisfies or does not satisfy
the specification. However, in many practical situations
there are reasons to prefer some trajectories over others
even if all such trajectories satisfy the specification. This is
typically done by associating a cost with each trajectory and
thus we can regard such requirements as quantitative. As
a first step towards our objective to synthesize controllers
enforcing qualitative and quantitative objectives, we consider
in this paper the synthesis of time-optimal controllers for
reachability specifications.
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The results described in this paper are obtained by com-
bining two different ingredients:

1) The possibility of constructing symbolic models of
control systems without relying on stability assump-
tions as was the case in previous work [1],[2]. A
thorough discussion of this result is the aim of the
companion paper [4], in which similar constructions
exhibiting some other interesting properties are pro-
posed;

2) The possibility of using an alternating simulation rela-
tion from system Sa to system Sb to infer information
about the solution of a time-optimal control problem
on Sb from the solution of a time-optimal control
problem on Sa. These results are new and reported
in Section III.

The above two ingredients allow us to efficiently solve
time-optimal control problems on a symbolic abstraction of
a control system. In addition to synthesizing a symbolic
controller providing an approximate solution for the optimal
control problem, we also provide upper and lower bounds for
the exact solution and show that the synthesized controller
is guaranteed to enforce these bounds. A concise user guide,
describing how to apply the techniques described in this
paper, is provided in section IV-C.

The synthesis of optimal controllers is an old quest of the
controls community and seminal contributions were made in
the 60’s by Pontryagin [5] and Bellman [6]. Yet, solving
optimal control problems with complex specifications or
complex dynamics is still a daunting problem. This motivates
the interest in numerical techniques for the solution of these
problems. A common method found in the literature is to di-
rectly discretize the value function and apply optimal search
algorithms on graphs such as Dijstra’s algorithm [7],[8].
Other techniques include Mixed (Linear or Quadratic) In-
teger Programing [9] and SAT-solvers [10].

The approach we follow in this paper is complementary
to mentioned techniques. Instead of developing discretization
techniques adapted to optimal control problems, we resort to
symbolic abstractions of control systems in the spirit of [11]
and analyze the simulation relations between them. Studying
these relations allows us not only to provide approximate
solutions to the optimal control problem, but also upper and
lower quantitative bounds on the achievable performance.
Moreover, through the use of the proposed abstractions many
classes of dynamical systems can be accommodated, and
complex qualitative specifications can be imposed. Further-
more, efficient algorithms and data structures investigated in



computer science can be employed in the implementation of
the proposed techniques, see for example the recent work on
optimal synthesis [12]. In particular, the examples presented
in the current paper were implemented using Binary Decision
Diagrams [13] which can be used to automatically generate
hardware [14] or software [15] implementations.

II. PRELIMINARIES

A. Notation

Let us start by introducing some notation that will be used
throughout the present paper. We denote by N the natural
numbers including zero and by N+ the strictly positive
natural numbers. With R+ we denote the strictly positive real
numbers, and with R+

0 the positive real numbers including
zero. By B we denote the Boolean numbers and bn(x) the
binary representation of x using n bits. The identity map on
a set A is denoted by 1A. If A is a subset of B we denote by
ıA : A ↪→ B or simply by ı the natural inclusion map taking
any a ∈ A to ı(a) = a ∈ B. Given a vector x ∈ Rn we
denote by xi the i–th element of x and by ‖x‖ the infinity
norm of x; we recall that ‖x‖ = max{|x1|, |x2|, ..., |xn|},
where |xi| denotes the absolute value of xi. The closed
ball centered at x ∈ Rn with radius ε is defined by
Bε(x) = {y ∈ Rn | ‖x− y‖ ≤ ε}. We denote by int(A) the
interior of a set A. For any A ⊆ Rn and µ ∈ R we define
the set [A]µ = {a ∈ A | ai = kiµ, ki ∈ Z, i = 1, ..., n}. The
set [A]µ will be used as an approximation of the set A with
precision µ. Geometrically, for any µ ∈ R+ and λ ≥ µ/2
the collection of sets {Bλ(q)}q∈[Rn]µ is a covering of Rn. A
continuous function γ : R+

0 → R+
0 , is said to belong to class

K if it is strictly increasing and γ(0) = 0; γ is said to belong
to class K∞ if γ ∈ K and γ(r)→∞ as r →∞. We identify
a relation R ⊆ A×B with the map R : A→ 2B defined by
b ∈ R(a) iff (a, b) ∈ R. Also, R−1 denotes the inverse re-
lation defined by R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}. We
also denote by d : X ×X → R+

0 a metric in the space X .

B. Systems

In the present paper we use the mathematical abstraction
of systems to model dynamical phenomena. This abstraction
is formalized in the following definition:

Definition II.1 (System [11]). A system S is a sextuple:
(X,X0, U,−→, Y,H) consisting of:

• a set of states X;
• a set of initial states X0 ⊆ X
• a set of inputs U ;
• a transition relation −→⊆ X × U ×X;
• a set of outputs Y ;
• an output map H : X → Y .

A system (X,X0, U,−→, Y,H) is said to be:

• metric, if the output set Y is equipped with a metric
d : Y × Y → R+

0 ;
• countable, if X and U are countable sets;
• finite, if X and U are finite sets.

We will often use the notation x
u- y to denote

(x, u, y) ∈ - . For a transition x
u- y, state y is

called a u-successor, or simply successor. We denote the set
of u-successors of a state x by Postu(x). If for all initial
states x and inputs u the sets Postu(x) are singletons (or
empty sets) we will say the system S is deterministic, if on
the other hand for some state x and input u the set Postu(x)
has cardinality greater than one, we will say that system S
is non-deterministic. Furthermore, if there exists some pair
(x, u) such that Postu(x) = ∅ we say the system is blocking,
and otherwise non-blocking. We also use the notation U(x)
to denote the set U(x) = {u ∈ U |Postu(x) 6= ∅}.

We can also define a deterministic version of system Sa,
which we will denote Sd(a) by extending the set of inputs:

Definition II.2. The deterministic system:

Sd(a) = (Xa, Xa0, Ud(a), d(a)
- , Ya, Ha)

associated to a system Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha),

is defined by:
• Ud(a) = Ua ×Xa

• x
(υ,x′)

d(a)
- x′ if there exists x

υ

a
- x′

Sometimes we need to refer to the possible sequences
of states and/or outputs that a system can exhibit. We call
these sequences of states or outputs: behaviours. Formally,
behaviours are defined as follows:

Definition II.3 (Behaviours [11]). For a system S and given
any state x ∈ X , a finite internal behaviour generated from
x is a finite sequence of transitions:

x0
u0- x1

u1- x2
u2- . . .

un−2- xn−1
un−1- xn

such that x0 = x and xi−1
ui−1- xi for all 0 ≤ i < n.

Through the output map, every finite internal behaviour
defines a finite external behaviour:

y0 - y1 - y2 - . . . - yn−1
- yn

with H(xi) = yi for all 0 ≤ i < n.
An infinite internal behaviour generated from x is an

infinite sequence of transitions:

x0
u0- x1

u1- x2
u2- x3

u3- . . .

such that x0 = x and xi−1
ui−1- xi for all i ∈ N. Through

the output map, every infinite internal behaviour defines an
infinite external behaviour:

y0 - y1 - y2 - y3 - . . .

with H(xi) = yi for all i ∈ N.

By Bx(S) (Bωx (S)), we denote the set of finite (infinite)
external behaviours generated from x. Sometimes we use the
notation y = y0y1y2 . . . yn, to denote external behaviours.
A behaviour y is said to be maximal if there is no other
behaviour containing y as a prefix.

In this paper we consider control systems to describe
dynamics evolving continuously on time over an infinite set



of states (e.g. Rn). Control systems are formalized in the
following definition:

Definition II.4 (Continuous-time control system [11]). A
control system is a triple Σ = (Rn,U , f) consisting of:
• the state set Rn;
• a set of input curves U whose elements are essentially

bounded piece-wise continuous functions of time from
intervals of the form ]a, b[⊆ R to U ⊆ Rm with
a < 0 < b;

• a smooth map f : Rn × U → Rn.
A piecewise continuously differentiable curve ξ :]a, b[→ Rn
is said to be a trajectory or solution of Σ if there exists
υ ∈ U satisfying:

ξ̇(t) = f(ξ(t), υ(t)),

for almost all t ∈ ]a, b[. Control system Σ is said to be
forward complete if every trajectory is defined on an interval
of the form ]a,∞[.

Although we have defined trajectories over open domains,
we shall refer to trajectories ξ : [0, τ ] → Rn defined on
closed domains [0, τ ], τ ∈ R+ with the understanding of the
existence of a trajectory ξ′ :]a, b[→ Rn such that ξ = ξ′|[0,τ ].
We will also write ξxυ(t) to denote the point reached at time
t ∈ [0, τ ] under the input υ from initial condition x; this point
is uniquely determined, since the assumptions on f ensure
existence and uniqueness of trajectories.

C. Systems relations

In the following sections we introduce abstractions for
control systems. The results we prove build upon certain
relations that can be established between these models.
These relations are formalized through the following two
definitions:

Definition II.5 (Approximate Simulation Relation [11]).
Consider two metric systems Sa and Sb with Ya = Yb, and
let ε ∈ R+

0 . A relation R ⊆ Xa × Xb is an ε-approximate
simulation relation from Sa to Sb if the following three
conditions are satisfied:

1) for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with
(xa0, xb0) ∈ R;

2) for every (xa, xb) ∈ R we have
d(Ha(xa), Hb(xb)) ≤ ε;

3) for every (xa, xb) ∈ R we have that: xa
ua

a
- x′a in

Sa implies the existence of xb
ub

b
- x′b in Sb satisfying

(x′a, x
′
b) ∈ R.

We say that Sa is ε-approximately simulated by Sb or that
Sb ε-approximately simulates Sa, denoted by Sa �εS Sb, if
there exists an ε-approximate simulation relation from Sa to
Sb.

Definition II.6 (Approximate alternating simulation rela-
tion [11]). Let Sa and Sb be metric systems with Ya = Yb and
let ε ∈ R+

0 . A relation R ⊆ Xa ×Xb is an ε-approximate
alternating simulation relation from Sa to Sb if the following
three conditions are satisfied:

1) for every xa0 ∈ Xa0 there exists xb0 ∈ Xb0 with
(xa0, xb0) ∈ R;

2) for every (xa, xb) ∈ R we have
d(Ha(xa), Hb(xb)) ≤ ε;

3) for every (xa, xb) ∈ R and for every ua ∈ Ua(xa)
there exists ub ∈ Ub(xb) such that for every
x′b ∈ Postub(xb) there exists x′a ∈ Postua(xa) satis-
fying (x′a, x

′
b) ∈ R.

We say that Sa is ε-approximately alternatingly simulated
by Sb or that Sb ε-approximately alternatingly simulates Sa,
denoted by Sa �εAS Sb, if there exists an ε-approximate
alternating simulation relation from Sa to Sb.

Note that whenever systems are deterministic the notion
of alternating simulation degenerates into that of simulation.
Also note that for any system Sa, its deterministic counter-
part Sd(a) satisfies Sa �0

AS Sd(a).

III. TIME-OPTIMAL CONTROL

A. Problem definition

In the present section we introduce general time-optimal
control problems over general systems, which are the objects
of our study. Before formalizing this problem we need to
introduce some more notation.

For general systems, the intuitive notion of feedback com-
position of a system S with another system Sc is denoted by
Sc×F S. The reader can find a formal definition of feedback
composition and a study of its properties in [11]. We shall
omit the formal definition in this paper for space reasons and
since we will not need it in any technical argument. Feedback
composition is now used to define reachability problems:

Problem III.1 (Reachability). Let Sa be a system with
Ya = Xa and Ha = 1Xa , and let W ⊆ Xa be a set of
states. The reachability problem asks to find a controller Sc
such that:

• Sc is feedback composable with Sa;
• for every maximal behaviour y ∈ Bx0(Sc ×F Sa) ∪
Bωx0

(Sc ×F Sa) there exists k(x0) ∈ N such that
y(k(x0)) = yk(x0) ∈W ;

To simplify the presentation, we consider only systems in
which Xa = Ya and Ha = 1Xa . However, all the results
in this paper can be extended to systems with Xa 6= Ya
and Ha 6= 1Xa by using the techniques described in [11].
We denote by R(Sa,W ) the set of controllers that solve the
reachability problem for system Sa with the target set W as
specification.

Definition III.2 (Entry time). The entry time of Sc×FSa into
W from x0, denoted by J(Sc ×F Sa,W, x0), is the minimum
k ∈ N such that ∀y ∈ Bx0(Sc ×F Sa) ∪ Bωx0

(Sc ×F Sa),
there exists some k′ ∈ [0, k] such that y(k′) = yk′ ∈W .

If the set W is not reachable from state x0 using controller
Sc we define J(Sc ×F Sa,W, x0) = ∞. Note that asking
in the definition for the minimum k is needed because in
general Sc ×F Sa might be a non-deterministic system, and



thus there might be more than one behaviour contained in
Bx0(Sc ×F Sa) ∪ Bωx0

(Sc ×F Sa).
Now we can formulate the time-optimal control problem

in terms of systems as follows:

Problem III.3 (Time-optimal control). Let Sa be a system
with Ya = Xa and Ha = 1Xa , and let W ⊆ Xa be a subset
of the set of states of Sa. Find the controller S∗c ∈ R(Sa,W )
such that for any other controller Sc ∈ R(Sa,W ) the
following is satisfied:

∀x0 ∈ Xa0, J(Sc ×F Sa,W, x0) ≥ J(S∗c ×F Sa,W, x0).

B. Cost bounds

The entry time J acts as the cost function we aim
at minimizing by designing an appropriate controller. We
establish now a result that will help us later in providing
bounds on the achievable cost.

Theorem III.4. Let Sa and Sb be two metric systems with
Ya = Yb and the same metric. If the following conditions are
satisfied:
• there exists a relation Rε ⊆ Xa × Xb such that
Sa �εAS Sb;

• (xa0, xb0) ∈ Rε;
• and for all xa ∈ Wa there exists xb ∈ Wb such that

(xa, xb) ∈ Rε
then the following holds:

J(S∗cb ×F Sb,Wb, xb0) ≤ J(S∗ca ×F Sa,Wa, xa0)

where S∗ca ∈ R(Sa,Wa) and S∗cb ∈ R(Sb,Wb) denote the
optimal controllers for their respective time-optimal control
problems.

Proof: We proceed by contradiction. Assume
J(S∗ca ×F Sa,Wa, xa0) < J(S∗cb ×F Sb,Wb, xb0).
From Sa �εAS Sb we have (see Proposition 11.10
in [11] and discussion thereafter) that the system
S′c = S∗ca ×F Sa is a controller for Sb and
S′c ×εG Sb �

1
2 ε

S S∗ca ×F Sa = S′c. But then, from the
third assumption, we have that for all xa0 ∈ Xa0 and
xb0 ∈ Xb0 such that (xa0, xb0) ∈ Rε, the following holds:
J(S′c ×F Sb,Wb, xb0) ≤ J(S∗ca ×F Sa,Wa, xa0). Hence,
contradicting that S∗cb ∈ R(Sb,Wb) is an optimal controller
for the reachability problem with system Sb and target set
Wb.

C. Solution to the optimal control problem

We show now that there exists a fixed point algorithm
solving the reachability problem. Moreover, the solutions
obtained in this way are, by construction, optimal controllers
for the time-optimal reachability problem.

For a given system Sa and target set W ⊆ Xa, we define
the operator GW : 2Xa → 2Xa by:

GW (Z) = {xa ∈ Xa | xa ∈W or ∃ ua ∈ Ua(xa)
s.t. ∅ 6= Postua(xa) ⊆ Z}

An optimal controller for system Sa to reach the
set W exists if and only if the minimal fixed point
Z = limi→∞GiW (∅) satisfies Z ∩ Xa0 6= ∅. Using the
operator GW again the optimal controller S∗c ∈ R(Sa,W ):

S∗c = (Xc, Xc0, Ua,
c
- , Xc, 1Xc)

is defined as:
• Xc = Zc;
• Xc0 = Z ∩Xa0;
• xc

ua

c
- x′c if there exists a k ∈ N+ such that

xc /∈ GkW (∅) and ∅ 6= Postua(xc) ⊆ GkW (∅)
where Postua(xc) refers to the ua–successors in Sa.

For more details about this controller design we refer the
reader to Chapter 6 of [11].

IV. APPROXIMATE TIME-OPTIMAL CONTROL

A. Symbolic models for control

In the subsequent sections we will assume that the control
systems under consideration satisfy the following assump-
tion:

Assumption IV.1. The control system Σ is incrementally
forward complete, i.e. there exists a continuous function
β : R+

0 × R+
0 → R+

0 , β(·, t) ∈ K∞ for each t ≥ 0, such
that for any two initial conditions x1, x2 ∈ X0, and for any
τ ∈ R+

0 the following bound holds:

‖ξx1υ(τ)− ξx2υ(τ))‖ ≤ β(‖x1 − x2‖ , τ).

Our goal is to provide solutions to time-optimal control
problems in an automatic fashion by means of computational
tools. In order to obtain finite models to which we can apply
computational algorithms we start by defining models for
control systems that evolve in discrete time:

Definition IV.2. The system

Sτ = (Xτ , Xτ0, Uτ ,
τ
- , Yτ , Hτ )

associated with a control system Σ = (Rn,U , f) and with
τ ∈ R+ consists of:
• Xτ = Rn;
• Xτ0 = Xτ ;
• Uτ = {υ ∈ U | dom υ = [0, τ ]};
• x

υ

τ
- x′ if there exist υ ∈ Uτ , and a trajectory

ξxυ : [0, τ ]→ Rn of Σ satisfying ξxυ(τ) = x′;
• Yτ = Rn;
• Hτ = 1Rn .

The output set Yτ = Rn of Sτ (Σ) is naturally equipped
with the norm-induced metric d(y, y′) = ‖y − y′‖.

Note how the models introduced above are still infinite
(they have an infinite state set). We now further quantize
Sτ (Σ) to construct a system Sτη(Σ) with a countable state
set. Moreover, we assume that the same input sets are avail-
able for Sτ (Σ) and its quantized counterpart Sτη(Σ). This
assumption is made for clarity of exposition, while it also
models realistic scenarios in which the controller only admits



(a finite number of) digital inputs, i.e. piecewise constant
and quantized. Yet, all the above theorems can be modified
to accommodate different input sets, as long as the set of
inputs available for the symbolic abstraction Sτη(Σ) is “rich
enough” to approximate the original input set. Moreover, all
the results that follow in subsequent sections are independent
of this assumption and are solely based on the relations we
prove in this subsection.

Definition IV.3. The system

Sτη = (Xτη, Xτη0, Uτη,
τη
- , Yτη, Hτη)

associated with a control system Σ = (Rn,U , f) and with
τ, η ∈ R+ consists of:
• Xτη = [Rn]η;
• Xτη0 = Xτη

• Uτη = {υ ∈ C | dom υ = [0, τ ]};
• x

υ

τη
- x′ if there exist υ ∈ Uτη, and a

trajectory ξxυ : [0, τ ] → Rn of Σ satisfying
int(Bβ(η/2,τ)(ξxυ(τ)) ∩Bη/2(x′)) 6= ∅;

• Yτη = Rn;
• Hτη = ı : Xτη ↪→ Rn.

The system Sτη(Σ) can be regarded as a time and space
quantization of a control system Σ. It is constructed by
approximating the transitions of Sτ (Σ) so as to enforce
departure from and arrival at states in Xτη = [Rn]η . The
domain of evolution of this abstraction is only countable but
infinite in general. In order to obtain abstractions resulting in
finite systems, one approach is to restrict the domain Xτη to
a finite subset of [Rn]η . In many practical applications there
are indeed physical or technological limitations imposing
boundaries on the state set. Note also that Sτη(Σ) is, in
general, a nondeterministic system.

In the following theorem we establish relationships be-
tween the systems Sτ (Σ) and its quantized counterpart
Sτη(Σ):

Theorem IV.4. For any control system Σ satisfying Assump-
tion IV.1, given a desired precision ε ∈ R+, for any τ ∈ R+,
and for η = 2ε, the following holds:

Sτη(Σ) �εAS Sτ (Σ) �εS Sτη(Σ).

Proof: (Sτη(Σ) �εAS Sτ (Σ)): Consider the relation
Rη ⊆ Xτ × Xτη defined by (xτ , xτη) ∈ Rε if and only
if ‖xτ − xτη‖ ≤ ε. Conditions 1. and 2. in Definition II.6
are automatically satisfied from the definition of Rε, and
Xτη0 = [Xτ0]η . To prove that the third condition is satisfied
consider a pair (xτ , xτη) ∈ Rε. For any υτη ∈ Uτη
there exists υτ ∈ Uτ such that υτ = υτη. The ele-
ment x′τ = ξxτυτ (τ) is the only element in Postυτ (xτ ),
and, in virtue of Assumption IV.1 and η = 2ε, it also
satisfies x′τ ∈ Bβ(η/2,τ)(ξxτηυτη (τ)). Hence, by construc-
tion of Sτη there exists x′τη ∈ Postυτη (xτη) such that
‖x′τη − x′τ‖ ≤ η/2 = ε, i.e. (x′τ , x

′
τη) ∈ Rε.

(Sτ (Σ) �εS Sτη(Σ)): Consider the same relation Rε as
in the first part of the proof. We now show that Rε is an

ε–approximate simulation relation from Sτ (Σ) to Sτη(Σ).
Conditions 1. and 2. in Definition II.5 are again trivially
satisfied. To show that condition 3. in Definition II.5 also
holds consider any (xτ , xτη) ∈ Rε, υτ ∈ Uτ and the
transition xτ

υτ

τ
- x′τ in Sτ (Σ). Since Uτη = Uτ there exists

υτη ∈ Uτη, υτη = υτ , and thus, in virtue of Assumption IV.1
and η = 2ε, it follows that x′τ ∈ Bβ(η/2,τ)(ξxτηυτη (τ)).
By construction there exists x′τη ∈ Postυτη (xτη) such that
‖x′τη − x′τ‖ ≤ η/2 = ε, hence (x′τ , x

′
τη) ∈ Rε.

Similar results can be obtained with constructions of
Sτη slightly different as presented in more detail in the
companion paper [4].

Following the definition of alternating simulation relation,
we obtain as a trivial consequence of the preceding result
the following corollary:

Corollary IV.5. For any control system Σ satisfying Assump-
tion IV.1, given a desired precision ε ∈ R+, for any τ ∈ R+,
and for η = 2ε, the following holds:

Sτ (Σ) �εAS Sd(τη)(Σ).

In the results hereafter we use the following extra assump-
tion:

Assumption IV.6. The function β in Assumption IV.1 is
superlinear on its first argument, i.e.

β(a, t) + β(b, t) ≤ β(a+ b, t)

for each t ≥ 0.

We will comment on this assumption after the following
theorem describing how to relate abstractions obtained for
different values of η:

Theorem IV.7. For any control system Σ satisfying Assump-
tion IV.1, any η ∈ R+, any τ ∈ R+, and any η′ = η

ρ with ρ
an odd number greater than one, the following holds:

Sτη(Σ) �εAS Sτη′(Σ)

with ε = η−η′
2 .

Proof: Consider the relation Rε ⊆ Xτη × Xτη′

defined by (xτη, xτη′) ∈ Rε iff ‖xτη − xτη′‖ ≤ ε.
We now show that Rε is an ε–approximate alternating
simulation relation from Sτη(Σ) to Sτη′(Σ). Conditions
1. and 2. in Definition II.6 are automatically satisfied
by the definition of Rε. In order to show that condition
3. is also satisfied, let (xτη, xτη′) ∈ Rε and pick
any υτη ∈ Uτη. The spaces of inputs are the same
in both systems, therefore there exists υτη′ = υτη,
υτη′ ∈ Uτη′ . By construction every x′τη′ ∈ Postυτη′ (xτη′)
satisfies int(Bη′/2(x′τη′) ∩Bβ(η′/2,τ)(ξxτη′υτη′ (τ))) 6= ∅.
Furthermore, from Assumption IV.1 we have that
‖ξxτη′υτη′ (τ)− ξxτη′υτη (τ)‖ ≤ β(ε, τ), and from Assump-
tion IV.6 we also know that β(η′/2, τ)+β(ε, τ) ≤ β(η/2, τ).
Thus Bβ(η′/2,τ)(ξxτη′υτη′ (τ)) ⊂ Bβ(η/2,τ)(ξxτηυτη (τ)).
Now notice that, for ρ odd, [X]η′ defines a sub-grid of
[X]η in which if for any x′k ∈ [X]η′ , xk ∈ [X]η , the
following holds: if int(Bη′/2(x′k) ∩ Bη/2(xk)) 6= ∅,



then there is no other xl ∈ [X]η , with xl 6= xk
such that int(Bη′/2(x′k) ∩ Bη/2(xl)) 6= ∅. Moreover
any pair xk ∈ [X]η, x′k ∈ [X]η′ satisfying
int(Bη′/2(x′k)∩Bη/2(xk)) 6= ∅, also satisfy ‖xk−x′k‖ ≤ ε.
Thus for every x′τη′ ∈ Postυτη′ (xτη′) there exists
zτη ∈ [X]τη such that int(Bη′/2(x′τη′) ∩ Bη/2(zτη)) 6= ∅,
and ‖x′τη′ − zτη‖ ≤ ε ≤ η/2. But then
int(Bβη/2,τ (zτη) ∩ Bβ(η/2,τ)(ξxτηυτη (τ))) 6= ∅, and
thus zτη ∈ Postυτη (xτη), which implies the existence of
x′τη ∈ Postυτη (xτη) such that (x′τη, x

′
τη′) ∈ Rε, namely

x′τη = zτη.
Combining this result with the fact that

Sτη′(Σ) �0
AS Sd(τη′)(Σ) we obtain trivially the following

result:

Corollary IV.8. For any control system Σ satisfying Assump-
tion IV.1, any η ∈ R+, any τ ∈ R+, and any η′ = η

ρ with ρ
an odd number greater than one, the following holds:

Sτη(Σ) �εAS Sd(τη′)(Σ)

with ε = η−η′
2 .

The following remark establishes that Assumption IV.6 is
not as restrictive as it might look at a first glance:

Remark IV.9. Given a desired precision ε, Theorem IV.4
establishes a maximum value for η: η ≤ 2ε. If for a fixed τ
a function β(·, τ) : R+

0 → R+
0 , β(·, τ) ∈ K∞ is available,

on the closed positive interval [0, η] it is always possible to
find a superlinear function βq(·, τ) : R+

0 → R+
0 such that

β(s, τ) ≤ βq(s, τ) for all s ∈ [0, η]. As a trivial example, if
β(·, τ) is differentiable consider the following linear function
βq(·, τ) = s(maxt∈[0,η]

d
dtβ(t, τ)) bounding β(·, τ).

B. Approximate time-optimal control via symbolic models

In the previous section we concluded that the system
Sτη(Σ) is such that Sτη(Σ) �ηAS Sτ (Σ) �ηAS Sd(τη)(Σ).
We would like to solve a time-optimal control problem over
Sτ (Σ) by resorting to the approximate model Sτη(Σ) in
which computational tools can be employed. Moreover, we
would like to obtain bounds for the true optimal cost in order
to assess the quality of the solutions obtained after refining
the controllers obtained over Sτη(Σ) to Sτ (Σ).

In what follows we require the following definitions con-
cerning approximations of sets:

Definition IV.10 (η-Inner (Outer) approximations of sets).
The sets bW cη ,dW eη are defined as the η-Inner (Outer)
approximations of a given set W ⊆ X ⊆ Rn as formalized
by:

bW cη = {x ∈ [X]η|Bη/2(x) ⊆W},
dW eη = {x ∈ [X]η|Bη/2(x) ∩W 6= ∅}.

Note that if now we define the relation Rη ⊂ X × [X]η ,
X ⊆ Rn as (x, xη) ∈ Rη ⇔ ‖x − xη‖ ≤ η/2, we have
R−1
η (bW cη) ⊆W and Rη(W ) ⊆ dW eη .
With all these definitions in place we are ready to establish

one of the main results of the present work:

Theorem IV.11. Consider a control system Σ satisfying As-
sumption IV.1, if ‖xτ0 − xτη0‖ ≤ η/2 the following bounds
hold:

J(S∗c ×F Sτη(Σ), bW cη , xτη0) ≥ J(S∗cτ ×F Sτ (Σ), W, xτ0)

J(S∗cd(τη) ×F Sd(τη)(Σ), dW eη , xτη0) ≤ J(S∗cτ ×F Sτ (Σ), W, xτ0)

where S∗cτ ∈ R(Sτ (Σ),W ), S∗cτη ∈ R(Sτη(Σ), bW cη) and
S∗cd(τη) ∈ R(Sd(τη)(Σ), dW eη) are the optimal controllers
for their respective time-optimal control problems.

Proof: This theorem is a direct consequence of applying
Theorem IV.4, Corollary IV.5 and Theorem III.4.

C. Approximate time-optimal control in practice

In this section we present a typical sequence of steps to be
followed when applying the presented techniques in practice.

1) Select a desired precision ε. This precision is in
general given by specified practical margins of error.

2) Enlarge the target set W . Enlarge the target set
according to the desired error margins.

3) Compute J(S∗cd(τη)×F Sd(τη)(Σ), dW eη, xη0) (lower
bound on the cost). This bound is obtained through
the use of the fixed-point algorithm in Section III-C.
This is the best lower bound one can obtain since it
follows from Theorem III.4 that by reducing η we will
not obtain a better lower bound.

4) Compute J(S∗c×FSτη(Σ), bW cη, xη0) (upper bound
on the cost). This bound is computed using the
fixed-point algorithm in Section III-C. The controller
obtained when computing this bound, i.e. S∗c , is the op-
timal controller for Sτη(Σ) and approximately optimal
for Sτ (Σ).

5) Iterate. If the obtained upper bound is not acceptable,
reduce η according to η′ = η

ρ with an odd ρ > 1, and
recompute the controller and upper bound. In virtue
of Theorems IV.7 and III.4, by reducing η the upper
bound will not increase. Moreover, it is our experience
that, in general, the upper bound will be reduced by
reducing η.

V. IMPLEMENTATION AND EXAMPLE

A. Binary Decisions Diagrams

Binary Decision Diagrams (BDDs) are efficient data struc-
tures used to store boolean functions. Intuitively, a BDD is
a binary tree with as many levels as bits in the domain of
the boolean function δa to be represented. The tree has two
final leaves labeled true and false, representing the output
of δa. At level i a branch is selected depending on the
value of the i-th bit of the input to δa until a final leave
is reached. BDD representations exhibit many advantages
for verification purposes [13]. We remark their effective use
of space when using their canonical form: Reduced Ordered
BDD (ROBDD) [13].

We employ BDDs to represent finite systems by trans-
forming the transition relation into a boolean function. If for
a given system Sa we know that the cardinalities of Xa and
Ua are |Xa| ≤ 2nx and |Ua| ≤ 2nu , the transition relation



a
- admits the alternative representation as a Boolean

function δa : Bnx × Bnu × Bnx → B, where:

δa(bnx(x),bnu(u),bnx(x′)) = true⇔ (x, u, x′) ∈ ........
a

-

All the algorithms employed in the subsequent example
have been implemented using ROBDD’s to store the transi-
tion relations of every system involved in the algorithms.

B. Example

We illustrate the proposed technique on the classical
example of the double integrator [5], where Σ is the control
system:

ξ̇x0,υ(t) =
[

0 1
0 0

]
ξ(t) +

[
0
1

]
υ(t)

and the target set W is the origin, i.e. W = {(0, 0)}. In
order to apply the proposed method one needs to enlarge the
target set W .

Following the instructions presented in Section IV-C, first
we select a precision ε = 0.15. Next we relax the problem
by enlarging the target set to W = B1((0, 0)). We select as
parameters for the symbolic abstraction τ = 1 and η = 0.3.
Restricting the state set to X = B30((0, 0)) ⊂ R2 the
set Xτη becomes finite and the proposed algorithms can be
applied. Constructing Sτη in Pessoa1 over Matlab took less
than 5 minutes and the resulting model required 7.9 MB to
be stored. The lower bound required about 50 milliseconds
while computing the time-optimal controller required only 3
seconds and the controller was stored in 1 MB.

We present the resulting bounds J(S∗c×FSτη, bW cη, xη0)
and J(S∗d(c) ×F Sd(τη), dW eη, xη0) for the cost function
J(S∗τc ×F Sτ ,W, x0) in Figure 1, and the approximately
optimal controller S∗c in Figure 2. Superimposed on Figure 2
is the switching curve for the optimal controller to reach the
origin (as reported in [5]). It should be no surprise that this
switching curve does not coincide with the one found by
our toolbox, as the continuous controller is not optimal to
reach the set W (it is just optimal when the target set is
the singleton {(0, 0)}). Although the computed bounds are
conservative, the cost achieved with the symbolic controller
is quite close to the true optimal cost. This is a consequence
of the bounds relying entirely on the computed abstractions
while the symbolic controller uses feedback from the real
system. This is illustrated in Table I, in which the time
to reach the target set W using the constructed controller
is compared to the cost of reaching W with the optimal
continuous controller to reach the origin.

VI. DISCUSSION

We have proposed a computational approach to solve time-
optimal control problems by resorting to abstractions of
control systems that approximately simulate or alternatingly
simulate the original control system. The solutions obtained

1Pessoa is a software toolbox for the synthesis of correct-by-design
embedded control software. Pessoa is scheduled to be made publicly
available on November 2009.
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Fig. 1. Upper bound J(S∗c ×F Sτη , bW cη , xη0) (left) and lower bound
J(S∗

d(c)
×F Sd(τη), dW eη , xη0) (right).
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Fig. 2. Symbolic controller S∗c .

provide explicit lower and upper bounds on the achievable
cost. The techniques employed allows one to solve complex
time-optimal control problems, with target sets, space sets
and dynamics of very general nature. We have implemented
the presented algorithms in a Toolbox for Matlab resorting to
BDD’s as the underlying data structures, and with them we
generated an example to illustrate the proposed techniques.
Future work will concentrate in the development of synthesis
algorithms for combinations of qualitative and quantitative
specifications for control systems.

Controller x0 = (−6.1, 6.1) (−6, 6) (−5.85, 5.85)

Continuous 12.83 s 12.66 s 11.60 s
Symbolic 14 s 14 s 13 s
UpperBound 29 s 29 s 29 s
LowerBound 9 s 9 s 9 s
Controller x0 = (3.1, 0.1) (3, 0) (2.85,−0.1)

Continuous 2.66 s 2.53 s 2.38 s
Symbolic 3 s 3 s 3 s
UpperBound 7 s 7 s 7 s
LowerBound 2 s 2 s 2 s

TABLE I
TIMES ACHIEVED IN SIMULATIONS BY A CONTINUOUS SUB-OPTIMAL

CONTROLLER AND THE SYMBOLIC CONTROLLER.
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