
On Self-Triggered Control for Linear Systems: Guarantees and Complexity

Manuel Mazo Jr., Adolfo Anta and Paulo Tabuada

Abstract— Typical digital implementations of feedback con-
trollers periodically measure the state, compute the control
law, and update the actuators. Although periodicity simplifies
the analysis and implementation, it results in a conservative
usage of resources. In this paper we drop the periodicity
assumption in favor of self-trigger strategies that decide when
to measure the state, execute the controller, and update the
actuators according to the current state of the system. In
particular, we develop a general procedure leading to self-
triggered implementations of feedback controllers, that highly
reduces the number of controller executions while guaranteeing
a desired level of performance. We also analyze the inherent
trade-off between the computational resources required for the
self-triggered implementation and the resulting performance.
The theoretical results are applied to a physical example to
show the benefits of the approach.

I. INTRODUCTION

Feedback control laws are traditionally implemented in
a periodic fashion due to the ease of design and analysis.
However, this approach represents a conservative solution
since the controller is updated at the same rate regardless of
the current state of the plant. A system could be on a stable
manifold of the state space and therefore require little or no
attention, while if the system lies on an unstable manifold,
it might demand faster updates. Periodic implementations
cannot take advantage of this fact because they disregard
the information contained in the state. Moreover, the period
is usually selected to guarantee a desired performance under
worst case conditions even though these might rarely occur.
Although there is a vast literature on periodic implementa-
tions of feedback control laws, ad hoc rules are still applied
to determine stabilizing periods (for instance, 20 times the
bandwidth of the system).

With the advent of embedded and networked control
systems, greater functionality is expected and control loops
no longer have at its disposal dedicated computational and
communication resources. While traditionally the implemen-
tation aspects were ignored at the design stage, this can no
longer be done. Hence, intensive research is being currently
conducted to ascertain the real-time requirements of con-
trol systems. Several researchers proposed resource-aware
implementations of control laws, such as event-triggered
control ([1], [2], [3], [4]). Under this paradigm, the controller
execution is triggered according to the state of the plant.

M. Mazo Jr, A. Anta, and P. Tabuada are with the Department of
Electrical Engineering, Henry Samueli School of Engineering and Ap-
plied Sciences, University of California, Los Angeles, CA 90095-1594,
{mmazo,adolfo,tabuada}@ee.ucla.edu

This work has been partially funded by the NSF awards 0712502,
0841216, and 0820061, a Spanish Ministry of Science and Educa-
tion/UCLA LA2004 − 0003 fellowship and a Mutua Madrileña Auto-
movilı́stica scholarship.

This approach calls for resources whenever they are indeed
necessary, and it provides a high degree of robustness, since
the system is being permanently monitored. However, these
implementations require, in general, dedicated hardware to
continuously monitor the state of the plant. Moreover, event-
triggered control systems lack a systems theory that facili-
tates the analysis of such systems.

To overcome these drawbacks of event-triggered systems,
in this paper we advocate the use of self-triggered imple-
mentations. The underlying idea is to emulate the event-
triggered implementation without resorting to extra hard-
ware. In most control systems, the state of the plant has
to be measured or estimated. Thus, this information can be
used by the controller to decide its next execution time. The
self-trigger approach was previously studied in [5], where
the next execution time is treated as a new state variable.
Although it represents an important step towards resource-
aware implementation, no guarantees of correct operation or
performance were provided. Self-triggered control was also
analyzed in [6], for the particular class of full-information
H∞ controllers, in [7] for distributed systems and in [8] for
nonlinear systems.

In this paper, we show how to obtain a self-triggered
implementation of any linear state-feedback controller sta-
bilizing a linear control system. Moreover, the resulting
self-triggered implementation preserves exponential stability
while reducing the number of executions of the controller.
We also study the trade-off between the complexity of the
implementation and the resulting control performance.

The rest of the paper is organized as follows: Section II
introduces some preliminary notation and definitions. Sec-
tion III defines event-triggered and self-triggered control and
introduces the problem we tackle in this paper. Sections IV
and V describe the proposed self-triggered implementation.
The performance guarantees and complexity of the imple-
mentation are provided in Section VI. Some examples illus-
trating the proposed techniques are presented in Section VII.
Related topics such as robustness of the self-trigger approach
and non-zero computation delays are briefly discussed in
Section VIII. The proof of the main theorem in the paper
is included in Appendix IX.

II. NOTATION

We denote by N+ the positive natural numbers, and R+

to the positive real numbers. We also use N+
0 = N+ ∪ {0}

and R+
0 = R+ ∪ {0}. The usual Euclidean vector norm is

represented by | · |. The set of eigenvalues of the matrix A is
indicated with {λi(A)}. A function γ : [0, a[→ R+

0 , a > 0
is of class K if it is continuous, zero at zero and strictly

increasing. A continuous function β : R+
0 × [0, a[→ R+

0 is of
class KL if β(τ, ·) is of class K for each τ ≥ 0 and β(·, s) is
monotonically decreasing to zero for each s ≥ 0. A class KL
function β(τ, s) is called exponential if β(τ, s) ≤ kse−cτ ,
k > 0, c > 0.

III. PROBLEM STATEMENT

The problem we aim to solve is that of finding an efficient
sample-and-hold implementation of a linear controller. In
this context an implementation will be more efficient than
another when it requires fewer executions to achieve the
same stability performance. Before formally introducing the
problem we tackle in this paper, we need to introduce
the notions of Event-Triggered Control and Self-Triggered
Control.

A. Event-triggered control.

Assume a linear control system:

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm (1)

and a linear feedback controller:

u = Kx (2)

rendering the closed loop asymptotically stable. For a con-
tinuous implementation we have ẋc = (A + BK)xc, hence
there exists a Lyapunov function Vc(t) := xTc (t)Pxc(t) such
that:

V̇c = xTc
(
(A+BK)TP + P (A+BK)

)
xc (3)

= −xTc Qxc (4)

with P satisfying the Lyapunov equation:

−Q = (A+BK)TP + P (A+BK) (5)

for some positive definite matrix Q.
Now let the control signal be obtained from sample and

hold measurements:

u(t) = Kx(tk), t ∈ [tk, tk+1[

where tk and tk+1 are two consecutive sampling instants.
We will call to any implementation in which the control
signal is held constant between executions, not necessarily
periodic, a sampled-data system. The closed loop dynamics
under a sample and hold implementation of the controller is
described by:

ẋ = Ax+BKx(tk) = (A+BK)x+BKe (6)

where e represents a measurement error defined by:

e(t) := x(tk)− x(t), t ∈ [tk, tk+1[(7)

Treating e(t) as a new state variable we can rewrite the state
space representation of the system as:[

ẋ
ė

]
=
[

A+BK BK
−A−BK −BK

] [
x
e

]
(8)

The selection of the sequence of update times {tk} at
which the controller is updated will determine the behavior

of the sampled-data system. In a periodic implementation,
we have tk+1 = tk +T , ∀k ∈ N+

0 , for some specified period
T > 0. In contrast with a periodic implementation, an event-
triggered strategy defines the sequence {tk} implicitly as the
times at which some triggering condition is violated. We start
this paper by proposing one such triggering condition.

We define the function V (t, x0) := x(t)TPx(t), where
x(t) is a solution of (1), x(0) = x0, and P is a positive
definite matrix. The specification is defined by a function
S : R+

0 × Rn → R+
0 upper-bounding the evolution of V .

This function S describes the desired performance for the
implemented control system. Hence, the update times tk are
determined by the time instants at which:

V (t, x0) ≤ S(t, x0), t ≥ t0 (9)

is violated. An event-triggered implementation will recom-
pute the controller whenever V (tk, x0) = S(tk, x0), in order
to prevent the violation of its triggering condition (9), since
V (0, x0) ≤ S(0, x0) for any x0. We refer to S(t, x0) as the
performance function from here on. We will drop the explicit
dependence on x0 of V and S whenever it is clear from the
context.

B. Self-triggered control.

The self-triggered control paradigm aims at obtaining a
map relating the current state x(tk) with the next sampling
time: h : Rn → R+, h(x(tk)) = tk+1. This map shall
provide with an emulation of the events generated by some
triggering condition, e.g. condition (9). If constructing such
h(·) is possible, a self-triggered implementation provides
with the same inter-execution times as an event-triggered
implementation. Furthermore, the self-triggered implemen-
tation does not require continuous monitoring of the state.
Now we can introduce the problem we tackle in the present
paper.

Problem 3.1 (Self-Triggered Control Design): Given the
linear control system (1), the linear state feedback con-
troller (2), an output function V (t, x0), and a perfor-
mance function S(t, x0), find a self-triggered implementation
achieving a predefined performance specified as a bound on
the evolution of V by S, i.e. V (t, x0) ≤ S(t, x0).

IV. PERFORMANCE SPECIFICATION

The first step in the design of our self-triggered implemen-
tation is to specify the desired performance. It is straight-
forward to conclude that an event-triggered implementation
based on (9) with S(t, x0) ≤ β(t, |x0|), ∀x0 ∈ Rn,
where β(t, |x0|) ∈ KL, renders the system (1) uniformly
globally asymptotically stable [9]. Furthermore, if β(t, |x0|)
is an exponential KL function, the system is uniformly
globally exponentially stable [9]. We are only interested in
specifications implying at least asymptotic stability of the
system, but we do not restrict ourselves to the case when
S(t, x0) := β(t, |x0|), for β(t, |x0|) ∈ KL.

Moreover, in order for an event-triggered or self-triggered
implementation to be of any use, the inter-execution times
tk+1−tk should be lower bounded by some positive quantity,

i.e. tk+1 − tk ≥ tmin > 0. To enforce inter-execution
times greater than zero it is sufficient to design S satisfying
V̇ (tk) < Ṡ(tk) at the execution times tk. For that matter,
we construct a hybrid system that describes the desired
performance. Thus, a possible design of S(t) satisfying the
above implication is given by the Lyapunov function:

S(t) := xs(t)TPxs(t)

for the hybrid system:

ẋs = Asxs, t ∈ [tk, tk+1[
xs(tk) := x(tk) (10)

where As is a Hurwitz matrix satisfying the Lyapunov
equation: (

ATs P + PAs
)

= −R (11)

In (11), R is a positive definite matrix making Q − R also
positive definite, and hence guaranteeing V̇ (tk) < Ṡ(tk).
Matrix R describes the stability requirements for the imple-
mentation as it defines As, used to determine S(t).

V. SELF-TRIGGER POLICY

In this section, a self-trigger condition guaranteeing in-
equality (9) is derived. We start by finding a lower bound
for the inter-execution times generated by such condition.

A. Computation of the minimum sampling-time.

The inter-execution times of this implementation are
implicitly defined by the inequality (9). By defining
y = [xT eT]T , we can rewrite system (8) in the following
form:

ẏ = Fy, F :=
[

A+BK BK
−A−BK −BK

]
whose solution is y = eFty0. With this notation, S(t) and
V (t) become:

S(t) = (CeFsty0)TP (CeFsty0) (12)
V (t) = (CeFty0)TP (CeFty0) (13)

for:
Fs :=

[
As 0
0 0

]
C :=

[
I 0

]
(14)

The triggering condition V (t) ≤ S(t) then turns into the
following inequality:

f(t, y0):=yT0 (eF
T tCTPCeFt − eF

T
s tCTPCeFst)y0≤0

(15)
Let t = h(x0) be the relation between t and x0 described

implicitly as the times at which the transcendental equa-
tion (15) becomes an equality, that is, f(h(x0), x0) = 0.
While it is not possible to find such map h in closed-
form, we can find its minimum value. This will provide us
with a tight lower bound for the inter-execution times under
the self-trigger strategy. In order to do so, we differentiate
equation (15) with respect to the initial condition x0. For
each coordinate we obtain:
df(t, y0)
dxi0

=
∂f(t, y0)
∂xi0

+
∂f(t, y0)

∂t

∂t

∂xi0
= 0, i = 1, . . . , n

The extrema of the map t = h(x0) are defined by the
following equation:

∂t

∂xi0
= −

∂f(t,yi0)

∂xi0
∂f(t,yi0)

∂t

= 0, i = 1, . . . , n (16)

The points (t, x0) where both ∂f(t,yi0)

∂xi0
and ∂f(t,yi0)

∂t become
0 do not need to be considered since they do not represent
points where the triggering condition is violated. Hence the
system of equations that we need to solve is:

∂f(t, y0)
∂xk0

=
2n∑
i=1

∂f(t, y0)
∂yi0

∂yi0
∂xk0

= 0, k = 1, . . . , n (17)

Combining (17) into matrix form we obtain:

M(t)x0 = 0 (18)

with:

M(t) :=
[
I 0

]
(eFtCTPCeFt−eFstCTPCeFst)

[
I
0

]
The solution to this equation gives us all the extrema of
the map h(x0). The minimum t satisfying equation (18)
corresponds to the smallest inter-execution time under the
triggering condition V (t) = S(t). Since the left hand side
of the previous equation is linear in x0, it is sufficient to
check when the matrix has a nontrivial nullspace. The afore-
mentioned procedure can be summarized in the following
theorem.

Theorem 5.1: Given the system (1) and the controller (2),
the inter-execution times defined by the triggering condi-
tion (15) are lower bounded by:

tmin = min{t ∈ R+ : det(M(t)) = 0} (19)
In fact, this method can also be regarded as a formal
procedure to find a sampling period for periodic imple-
mentations, in contrast with the ad-hoc rules of thumb that
are frequently used [10]. Moreover, this analysis can also
be applied, mutatis mutandis , to other Lyapunov-based
triggering conditions, like the ones appearing in [4] and [6].

B. Implementation.

To simplify the presentation, we embed the state space
into a higher dimensional space where both the dynamics
as well as the triggering conditions become linear. This
embedding also leads to a simpler implementation of the
technique described below.

The desired embedding is the Veronese map of order 2
defined by:

ϑ2 : Rn → R
n(n+1)

2

ϑ2(x) := [x2
1 x1x2 . . . x1xn x

2
2 x2x3 . . . x2

n]T

The reader can easily verify that V (t) = x(t)TPx(t)
can be rewritten in linear form as V (t) = Lϑ2(x(t)) for
L ∈ R

n(n+1)
2 .

If we denote by z, zs ∈ R
2n(2n+1)

2 the vectors
z = ϑ2([xT eT]T) and zs = ϑ2([xT 0]T), the triggering
condition simplifies to Lz(t) ≤ Lzs(t).

Furthermore, on the coordinates given by the Veronese
map, the dynamics remains linear, i.e. ż = Gz, for some
G of appropriate dimensions. Hence, we can discretize the
dynamics as:

z(tk + r∆) = T rz(tk), T := eG∆, r ∈ N+
0

where ∆ > 0 is the discretization step. Analogously, żs =
Gszs and Ts := eGs∆. As a consequence, now we can
compute the value of V (t) and S(t) at t = tk + r∆:

V (tk + r∆) = LT rz(tk) S(tk + r∆) = LT rs z(tk)

only from the initial condition x(tk).
Using these expressions for V and S we can compute the

next execution time as follows. Let us define rmin := b tmin∆ c
and rmax := b tmax∆ c, where tmax is the maximum time the
system is allowed to run in open loop (a design parameter),
and tmin as defined in (19). The discretized model just
provides with values of z at times tr = tk + ∆r, r ∈ N+

o .
The next execution time satisfying (9) could be computed
as:

tk+1 = tk+(rmin+min ({j : νj > 0, νj+1 < 0})−1)∆ (20)

where νj = S(tk+(rmin+j−1)∆)−V (tk+(rmin+j−1)∆)
is the jth entry of the vector ν defined as:

ν = L̂z(tk), L̂ =

L(T rmins − T rmin)

L(T rmin+1
s − T rmin+1)

...
L(T rmaxs − T rmax)

 (21)

The vector ν represents the discretized evolution of the
triggering condition (9). The fact that e(tk) = 0 will let
us have a more efficient implementation in terms of memory
usage. We will address these issues in the next section. Also
notice that the matrix L̂ is computed only once at design
time, and the only terms to be computed online are z(tk)
and the product L̂z(tk).

The proposed policy ensures that V (r∆) ≤ S(r∆),
∀r ∈ N+

0 , but does not establish any bound on V (t) at the
points t 6= r∆. At those points V (t) might be greater than
S(t) and we could not detect it. To overcome this drawback,
we develop in the following section a bound for V (t) in the
spirit of those in [11], in order to provide with a performance
guarantee under the self-trigger policy (20).

VI. MAIN RESULTS

We establish the performance guarantees achieved by the
self-trigger protocol (20) in the following theorem:

Theorem 6.1 (Guaranteed performance): The linear sys-
tem (1), with control law (2) under the implementation
defined by (20), with S(t) defined as in (10) and ∆ as
discretization step satisfies:

V (t, x(tk)) ≤ g(∆, rmax)S(t, x(tk)), ∀t ∈ [tk, tk+1[(22)

where:

g(∆, rmax) := e
(ρ+λ)µ∆
µ−ρ + eλ(rmax−1)∆

(
e

(ρ+λ)µ∆
µ−ρ − e

λµ∆
µ−ρ

)
ρ := max

i
({λi(F)})

µ := min
i

({λi(F)})

λ := max
i

({λi(R̃)}), R̃ := P− 1
2RP− 1

2

F :=

[
P

1
2AP− 1

2 + (P
1
2AP− 1

2)T P
1
2BKP− 1

2

(P
1
2BKP− 1

2)T 0

]

Corollary 6.2 (Exponential Stability): The implementa-
tion is uniformly globally exponentially stable with:

V (t) ≤ β(t, |xs(t0)|) := σ̄g(∆, rmax)|xs(t0)|2e−λt, ∀t ∈ R+
0

λ := min
i

({λi(R̃)}), σ̄ := max
i

({λi(P)})
The proof to the theorem is included in the appendix.

Tighter, but more convoluted, bounds than the ones pre-
sented in the theorem can be obtained through equa-
tions (33) and (34) in the appendix. The proof of the corollary
is straightforward. The value g(∆, rmax) can be regarded as
a measure of the degradation of the performance as a function
of ∆ and rmax. One can also see this measure of degradation
in the form of a delay, i.e. V (t) ≤ V (t0)e−λ(t−δ), with the
delay given by:

δ =
1
λ

log(g(∆, rmax)) (23)

When discussing the space and time complexity of the pro-
posed self-trigger strategy, we shall use Ms to denote space
complexity and Mt to denote time complexity. Note that Ms

and Mt only describe the space and time complexity that
are needed to go from a periodic implementation to a self-
triggered implementation. Regarding time complexity, we
assume a unitary cost for products, additions and comparison
operations. We summarize the complexity of implementing
the self-trigger protocol (20) in the following Theorem:

Theorem 6.3 (Implementation Complexity): The
n-dimensional linear system (1), with control law (2)
under the implementation defined by (20), with S(t) defined
as in (10) and ∆ as discretization step requires Ms units of
memory and Mt computations, for:

Ms := N(∆)
n(n+ 1)

2
(24)

Mt := 2Ms +N(∆) +
n(n+ 1)

2
(25)

with N(∆) := b tmax∆ c − b tmin∆ c.
Proof:

[Space complexity]: N(∆) vectors are needed to
check the condition (9) at the different times tk + r∆,
r = b tmin∆ c . . . b

tmax
∆ c. Since e(tk) = 0, instead of stor-

ing the matrix L̂ ∈ RN(∆)× 2n(2n+1)
2 that multiplied

ϑ2([xT eT]T), we can select the subset of its entries cor-
responding to only ϑ2(x). Thus the matrix of vectors to be
stored L̂x has size N(∆)n(n+1)

2 .
[Time Complexity]: The operation ν = L̂xzx(tk), with

zx = ϑ2(x) requires N(∆)× n(n+1)
2 products and the same

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

t [s]

S(t)
V(t)

Fig. 1. Lyapunov function decay and performance function S(t)
for ∆ = 1ms.

amount of additions, besides the n(n+1)
2 products necessary

to compute the embedding ϑ2(x). Moreover, we need to find
the first change of sign in the vector ν which requires N(∆)
comparisons. Adding all those terms proves the expression
provided.

Theorem 6.3 describes the main trade-offs in this self-
triggered implementation: decreasing the discretization step
∆ increases the complexity linearly, but improves the per-
formance guarantee exponentially through g(∆, rmax).

VII. EXAMPLE

To illustrate the performance of the proposed self-
triggered implementation we borrow the Batch Reactor
model from [12] with state space description:

ẋ=

 1.38 −0.20 6.71 −5.67
−0.58 −4.29 0 0.67
1.06 4.27 −6.65 5.89
0.04 4.27 1.34 −2.10

x+

 0 0
5.67 0
1.13 −3.14
1.13 0

u
A state feedback controller placing the poles of the closed

loop system at {−3 + 1.2i,−3− 1.2i,−3.6,−3.9} is given
by:

K =
[

0.1006 −0.2469 −0.0952 −0.2447
1.4099 −0.1966 0.0139 0.0823

]
The matrix Q is set to the identity Q = I , R = 0.5Q, and
P is obtained from solving the Lyapunov equation (5).

We compute the minimum time tmin = 20ms using (19).
We first select tmax = 300ms and ∆ = 1ms. With this
design the complexity becomes Ms = 2810 and Mt =
5911. The worst-case required computational speed (Mt

computations in tmin) does not represent an impediment for
current microprocessors. Figure 1 depicts the evolution of the
Lyapunov function V (t) against the performance function
employed in the design S(t). We zoomed in the first second
to better appreciate the triggering condition and the effect of
setting a maximum inter-sample time. We have also marked
with vertical dashed lines the instants at which a new update
happens; see also Figure 2 which depicts the evolution of
the inter-execution times.

We use the delay δ as the measure of the performance
guarantees. Tables I and II present the different values of δ
as ∆ and tmax vary. Although the performance guarantees
degrade with ∆, simulation results show only a modest
degradation with ∆ of the achieved performance. This is
illustrated in Figure 3 and in Table I by looking at the
number of controller updates in 10s. On the other hand we

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t [s]

t k−
t k−

1 [s
]

Fig. 2. Inter-execution times for ∆ = 1ms.

0 1 2 3 4 5 6 7 8 9 100

20

40

60

80

100

120

t[s]

!=1ms
!=2ms
!=3ms
!=10ms
"(t,|xo|)

Periodic 20ms

Fig. 3. Evolution of V (t) for different values of ∆.

can see how increasing the time tmax has a negative effect
on the guarantees, but does provide improvements in terms
of number of updates (see Table II). The implementation
complexity (Ms and Mt) for those different values of ∆ and
tmax, are summarized in Tables I and II.

Finally, to illustrate the effect of the discretization step
∆, we raised tmax to 900ms, and simulated the system
with initial conditions x(θ) = [6 sin(θ) 6 cos(θ) 1 9]T . In
Figure 4 we present the inter-execution times produced by
the self-trigger protocol with different values of ∆ for initial
conditions with θ ranging from 0 to 0.5 radians. We can
clearly appreciate the quantizing effect of ∆ on the inter-
execution times.

TABLE I
IMPLEMENTATION COMPLEXITY AND PERFORMANCE

AS A FUNCTION OF ∆ FOR tmax = 0.3s, IN 10s.

Periodic (T=20ms) 1ms 2ms 5ms 10ms

Ms 0 2810 1410 570 290
Mt 0 5911 2971 1207 619
δ[s] 0 0.12 0.23 0.55 1.01
Updates 500 62 62 62 63

TABLE II
IMPLEMENTATION COMPLEXITY AND PERFORMANCE

AS A FUNCTION OF tmax FOR ∆ = 5ms, IN 10s.

Periodic (T=20ms) 0.1s 0.3s 0.5s 0.9s

Ms 0 170 570 970 1770
Mt 0 367 1207 2047 3727
δ[s] 0 0.24 0.55 1.42 5.75
Updates 500 102 62 47 32

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.34

0.35

0.36

0.37

0.38

0.39

0.4

! [rad]

t k−
t k+

1 [s
]

"=1ms
"=2ms
"=5ms
"=10ms

Fig. 4. Inter-execution times as a function of ∆.

VIII. DISCUSSION

The self-triggered implementation, described in Section V,
can be used for any state-feedback linear controller stabiliz-
ing a linear plant. The case of dynamic controllers, although
not described in this paper, can be handled using similar tech-
niques. Moreover, the performance degradation, described by
the term g(∆, rmax), can be suitably modified to accommo-
date the influence of a non-zero delay between sensing and
updating the actuators, by following the methods described
in [4]. Self-triggered and event-triggered implementations
are known to have some degree of robustness with respect
to disturbances [13]. The authors are currently investigating
the trade-offs between the computational complexity of the
implementation and its robustness.

Of independent interest is the method described in Sec-
tion V-A to compute the minimum inter-execution time.
This method offers an alternative approach to the choice
of sampling periods for periodic implementations of linear
controllers.

REFERENCES

[1] K. Årzén, “A simple event based PID controller,” Proceedings of 14th
IFAC World Congress, vol. 18, pp. 423–428, 1999.

[2] K. Åström and B. Bernhardsson, “Comparison of Riemann and
Lebesgue sampling for first order stochastic systems,” Proceedings
of the 41st IEEE Conference on Decision and Control, vol. 2, 2002.

[3] W. Heemels, J. Sandee, and P. van den Bosch, “Analysis of event-
driven controllers for linear systems,” Int. J. of Control, pp. 81(4),
571–590, 2008.

[4] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52(9), pp. 1680–
1685, 2007.

[5] M. Velasco, J. Fuertes, and P. Marti, “The self triggered task model
for real-time control systems,” Work in Progress Proceedings of the
24th IEEE Real-Time Systems Symposium, pp. 67–70, 2003.

[6] X. Wang and M. Lemmon, “State based Self-triggered feedback
control systems with L2 stability,” 17th IFAC world congress, 2008.

[7] M. Mazo Jr and P. Tabuada, “On Event-Triggered and Self-Triggered
Control over Sensor/Actuator Networks,” Proceedings of the 47th
IEEE Conference on Decision and Control, 2008.

[8] A. Anta and P. Tabuada, “To sample or not to sample: Self-
triggered control for nonlinear systems,” Accepted for publication.
arXiv:0806.0709, 2008.

[9] H. Khalil, Nonlinear systems. Prentice Hall Upper Saddle River, NJ,
2002.

[10] K. Åström and B. Wittenmark, Computer controlled systems. Prentice
Hall Englewood Cliffs, NJ, 1990.

[11] D. Nesic, A. Teel, and E. Sontag, “Formulas relating KL stability
estimates of discrete-time and sampled-data nonlinear systems,” Syst.
Control Lett, vol. 38, pp. 49–60, 1999.

[12] G. C. Walsh and H. Ye, “Scheduling of Networked Control Systems,”
IEEE Control Systems Magazine, 2001.

[13] M. Lemmon, T. Chantem, X. Hu, and M. Zyskowski, “On Self-
Triggered Full Information H-infinity Controllers,” Hybrid Systems:
Computation and Control, April, 2007.

IX. APPENDIX

Proof: [Theorem 6.1]
From the definitions of µ, ρ, λ and λ we have that:

µ (V (t) + V (tk)) ≤ V̇ (t) ≤ ρ (V (t) + V (tk)) (26)
−λS(t) ≤ Ṡ(t) ≤ −λS(t) (27)

and integrating the differential inequalities above we obtain:

V (t+ s) ≤ eρsV (t) + V (tk) (eρs − 1) , (28)
V (t+ s) ≥ eµsV (t) + V (tk) (eµs − 1) , (29)
S(t+ s) ≤ e−λsS(t), (30)

S(t+ s) ≥ e−λsS(t) (31)

Denoting τ = n∆ = tk +N∆, an upper bound for V (t) for
t ∈ [τ, τ + ∆[is then provided by:

V (τ+s) ≤
{
eρsV (τ) + V (tk)(eρs − 1), s ∈ [0, s∗]

eµ(s−∆)V (τ + ∆) + V (tk)(eµ(s−∆) − 1), s ∈ [s∗,∆[
(32)

Hence, the maximum of V (τ + s) for s ∈ [0,∆[, is attained
at s = s∗, where:

s∗ =
1

ρ− µ
log
(
V (τ + ∆) + V (tk)
V (τ) + V (tk)

)
+

µ∆
µ− ρ

(33)

Thus, the maximum of V (t), t ∈ [n∆, (n+ 1)∆[is:

V (τ + s∗) =

e
ρµ∆
µ−ρ

(
(V (τ) + V (tk))

µ
µ−ρ (V (τ + ∆) + V (tk))

−ρ
µ−ρ

)
− V (tk)

which is monotonically increasing on V (τ), V (τ + ∆) and
V (tk), and therefore in the worst case it would be bounded
by:

V (τ + s∗) ≤

e
ρµ∆
µ−ρ

(
(S(τ) + S(tk))

µ
µ−ρ (S(τ + ∆) + S(tk))

−ρ
µ−ρ

)
− S(tk)

Furthermore, we can use the bounds available for the
evolution of S(t) to obtain V (τ+s∗) ≤ g(∆, rmax)S(τ+s∗)
where:
g(∆, rmax) =(

e
ρµ∆
µ−ρ

(
e
λs∗

+ e
λ(N∆+s∗)

) µ
µ−ρ

(
e
−λ(∆−s∗)

+ e
λ(N∆+s∗)

) −ρ
µ−ρ −

− e
λ(N∆+s∗)

)
(34)

≤ e
ρµ∆
µ−ρ e

λs∗
+ e

λ(N∆+s∗)
(
e
ρµ∆
µ−ρ − 1

)
(35)

with s∗ as in (33). The value of s∗ can be further bounded
to obtain a cleaner expression:

s∗ ≤ µ∆
µ− ρ

(36)

When s∗ ≤ 0, no maximum occurs between samples and
g(∆, rmax) becomes 1. Otherwise, substitute (36) in (35),
let N take its maximum possible value N = rmax − 1,
and note that the bound V (t) ≤ g(∆, rmax)S(t) holds for
all t ∈ [n∆, (n+ 1)∆[, to conclude the proof.

